Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.01.21262715

ABSTRACT

Although the respiratory tract is the primary site of SARS-CoV-2 infection and the ensuing immunopathology, respiratory immune responses are understudied and urgently needed to understand mechanisms underlying COVID-19 disease pathogenesis. We collected paired longitudinal blood and respiratory tract samples (endotracheal aspirate, sputum or pleural fluid) from hospitalized COVID-19 patients and non-COVID-19 controls. Cellular, humoral and cytokine responses were analysed and correlated with clinical data. SARS-CoV-2-specific IgM, IgG and IgA antibodies were detected using ELISA and multiplex assay in both the respiratory tract and blood of COVID-19 patients, although a higher receptor binding domain (RBD)-specific IgM and IgG seroconversion level was found in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples was detected only when high levels of RBD-specific antibodies were present. Strikingly, cytokine/chemokine levels and profiles greatly differed between respiratory samples and plasma, indicating that inflammation needs to be assessed in respiratory specimens for the accurate assessment of SARS-CoV-2 immunopathology. Diverse immune cell subsets were detected in respiratory samples, albeit dominated by neutrophils. Importantly, we also showed that dexamethasone and/or remdesivir treatment did not affect humoral responses in blood of COVID-19 patients. Overall, our study unveils stark differences in innate and adaptive immune responses between respiratory samples and blood and provides important insights into effect of drug therapy on immune responses in COVID-19 patients.


Subject(s)
COVID-19 , Ossification of Posterior Longitudinal Ligament , Inflammation , Pleural Diseases
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-802084.v1

ABSTRACT

Although the respiratory tract is the primary site of SARS-CoV-2 infection and the ensuing immunopathology, respiratory immune responses are understudied and urgently needed to understand mechanisms underlying COVID-19 disease pathogenesis. We collected paired longitudinal blood and respiratory tract samples (endotracheal aspirate, sputum or pleural fluid) from hospitalized COVID-19 patients and non-COVID-19 controls. Cellular, humoral and cytokine responses were analysed and correlated with clinical data. SARS-CoV-2-specific IgM, IgG and IgA antibodies were detected using ELISA and multiplex assay in both the respiratory tract and blood of COVID-19 patients, although a higher receptor binding domain (RBD)-specific IgM and IgG seroconversion level was found in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples was detected only when high levels of RBD-specific antibodies were present. Strikingly, cytokine/chemokine levels and profiles greatly differed between respiratory samples and plasma, indicating that inflammation needs to be assessed in respiratory specimens for the accurate assessment of SARS-CoV-2 immunopathology. Diverse immune cell subsets were detected in respiratory samples, albeit dominated by neutrophils. Importantly, we also showed that dexamethasone and/or remdesivir treatment did not affect humoral responses in blood of COVID-19 patients. Overall, our study unveils stark differences in innate and adaptive immune responses between respiratory samples and blood and provides important insights into effect of drug therapy on immune responses in COVID-19 patients.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256776

ABSTRACT

Disrupted antiviral immune responses are associated with severe COVID-19, the disease caused by SAR-CoV-2. Here, we show that the 73-amino-acid protein encoded by ORF9c of the viral genome contains a putative transmembrane domain, interacts with membrane proteins in multiple cellular compartments, and impairs antiviral processes in a lung epithelial cell line. Proteomic, interactome, and transcriptomic analyses, combined with bioinformatic analysis, revealed that expression of only this highly unstable small viral protein impaired interferon signaling, antigen presentation, and complement signaling, while inducing IL-6 signaling. Furthermore, we showed that interfering with ORF9c degradation by either proteasome inhibition or inhibition of the ATPase VCP blunted the effects of ORF9c. Our study indicated that ORF9c enables immune evasion and coordinates cellular changes essential for the SARS-CoV-2 life cycle. One-sentence summarySARS-CoV-2 ORF9c is the first human coronavirus protein localized to membrane, suppressing antiviral response, resembling full viral infection.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256735

ABSTRACT

There is an urgent need to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) that leads to COVID-19 and respiratory failure. Our study is to discover differentially expressed genes (DEGs) and biological signaling pathways by using a bioinformatics approach to elucidate their potential pathogenesis. The gene expression profiles of the GSE150819 datasets were originally produced using an Illumina NextSeq 500 (Homo sapiens). KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) were utilized to identify functional categories and significant pathways. KEGG and GO results suggested that the Cytokine-cytokine receptor interaction, P53 signaling pathway, and Apoptosis are the main signaling pathways in SARS-CoV-2 infected human bronchial organoids (hBOs). Furthermore, NFKBIA, C3, and CCL20 may be key genes in SARS-CoV-2 infected hBOs. Therefore, our study provides further insights into the therapy of COVID-19.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.17.20176370

ABSTRACT

An improved understanding of human T-cell-mediated immunity in COVID-19 is important if we are to optimize therapeutic and vaccine strategies. Experience with influenza shows that infection primes CD8+ T-cell memory to shared peptides presented by common HLA types like HLA-A2. Following re-infection, cross-reactive CD8+ T-cells enhance recovery and diminish clinical severity. Stimulating peripheral blood mononuclear cells from COVID-19 convalescent patients with overlapping peptides from SARS-CoV-2 Spike, Nucleocapsid and Membrane proteins led to the clonal expansion of SARS-CoV-2-specific CD8+ and CD4+ T-cells in vitro, with CD4+ sets being typically robust. For CD8+ T-cells taken directly ex vivo, we identified two HLA-A*02:01-restricted SARS-CoV-2 epitopes, A2/S269-277 and A2/Orf1ab3183-3191. Using peptide-HLA tetramer enrichment, direct ex vivo assessment of the A2/S269+CD8+ and A2/Orf1ab3183+CD8+ populations indicated that the more prominent A2/S269+CD8+ set was detected at comparable frequency ([~]1.3x10-5) in acute and convalescent HLA-A*02:01+ patients. But, while the numbers were higher than those found in uninfected HLA-A*02:01+ donors ([~]2.5x10-6), they were low when compared with frequencies for influenza-specific (A2/M158) and EBV-specific (A2/BMLF1280) ([~]1.38x10-4) populations. Phenotypic analysis ex vivo of A2/S269+CD8+ T-cells from COVID-19 convalescents showed that A2/S269+CD8+ T-cells were predominantly negative for the CD38, HLA-DR, PD-1 and CD71 activation markers, although the majority of total CD8+ T-cells were granzyme and/or perforin-positive. Furthermore, the bias towards naive, stem cell memory and central memory A2/S269+CD8+ T-cells rather than effector memory populations suggests that SARS-CoV2 infection may be compromising CD8+ T-cell activation. Priming with an appropriate vaccine may thus have great value for optimizing protective CD8+ T-cell immunity in COVID-19.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256578

ABSTRACT

There is an urgent need for a safe and protective vaccine to control the global spread of SARS-CoV-2 and prevent COVID-19. Here, we report the immunogenicity and protective efficacy of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length SARS-CoV-2 spike (S) glycoprotein stabilized in the prefusion conformation. Cynomolgus macaques (Macaca fascicularis) immunized with NVX-CoV2373 and the saponin-based Matrix-M adjuvant induced anti-S antibody that was neutralizing and blocked binding to the human angiotensin-converting enzyme 2 (hACE2) receptor. Following intranasal and intratracheal challenge with SARS-CoV-2, immunized macaques were protected against upper and lower infection and pulmonary disease. These results support ongoing phase 1/2 clinical studies of the safety and immunogenicity of NVX-CoV2327 vaccine (NCT04368988). HighlightsO_LIFull-length SARS-CoV-2 prefusion spike with Matrix-M1 (NVX-CoV2373) vaccine. C_LIO_LIInduced hACE2 receptor blocking and neutralizing antibodies in macaques. C_LIO_LIVaccine protected against SARS-CoV-2 replication in the nose and lungs. C_LIO_LIAbsence of pulmonary pathology in NVX-CoV2373 vaccinated macaques. C_LI


Subject(s)
COVID-19 , Lung Diseases
SELECTION OF CITATIONS
SEARCH DETAIL